巧解高中化学计算题
来源:汉寿教育信息网 时间:2016-05-04 16:23:17

上了高中许多的学生都会发觉化学越来越难了,尤其是化学中的计算题.正因为这样,他们一看到化学计算题就马上想到先放弃,先去做其他的,计算题最后做.几乎大部分的学生都认为化学计算题很难,也都坚持”先其他,后计算”的解题路线.其实这样的想法很盲目,太过于绝对了.我个人认为化学计算题是很简单的,关键是解题的人有没有把问题简单化,分析化,也可以说是”干脆点理解”吧.其实我们想想也知道,在化学的计算题目中,我们所需要的信息或者数据都不过是从那些长长的或者简短的句子中简化分析而来的.可能有人会问:”那为什么要把那些句子用这种方式表示出来呢,而不干脆点直接告诉我们?”在我看来,这也许就是一种老套的障眼法和耐力战吧,想用这或长或短句子把信息藏起来,也想用这些句子,让我们看得不耐烦了,把我们”打倒”.所以咯!狭路相逢,勇者胜!看你是不是勇者了! 以下是我根据自己的一些经验所总结的解题方法,希望对同学们可以有一点帮助吧.

一、关系式法

所谓关系式法,就是根据化学概念、物质组成、化学反应方程式中有关物质的有关数量之间的关系,建立起已知和未知之间的关系式,然后根据关系式进行计算。利用关系式的解题,可使运算过程大为简化。

其中包括守恒法。所谓“守恒”就是以化学反应过程中存在的某些守恒关系如质量守恒、元素守恒、得失电子守恒,电荷守恒等。运用守恒法解题可避免在纷纭复杂的解题背景中寻找关系式,提高解题的准确度。

例1、有一在空气中放置了一段时间的KOH固体,经分析测知其含水2.8%、含K2CO337.3% 取1g该样品投入25mL2mol/L的盐酸中后,多余的盐酸用1.0mol/LKOH溶液30.8mL恰好完全中和,蒸发中和后的溶液可得到固体的质量为多少?

【解析】本题化学反应复杂,数字处理烦琐,所发生的化学反应:KOH+HCl=KCl+H2O K2CO3+2HCl=2KCl+H2O+CO2↑

若根据反应通过所给出的量计算非常繁琐。

但若根据Cl—守恒,便可以看出:蒸发溶液所得KCl固体中的Cl—,全部来自盐酸中的Cl-,

即:生成的n(KCl)=n(HCl)=0.025L2mol/L m(KCl)=0.025L2mol/L74.5g/mol=3.725g

例2、将纯铁丝5.21g溶于过量稀盐酸中,在加热条件下,用2.53gKNO3去氧化溶液中Fe2+,待反应后剩余的Fe2+离子尚需12mL0.3mol/LKMnO4溶液才能完全氧化,则KNO3被还原后的产物为()

A、N2 B、NO

C、NO2 D、NH4NO3

【解析】根据氧化还原反应中得失电子的总数相等,Fe2+变为Fe3+

失去电子的总数等于NO3-和MnO4-

得电子的总数

设n为KNO3的还原产物中N的化合价,则

(5.21g56g/moL)(3-2)=0.012L0.3mol/L(7-2)+(2.53g101g/mol)(5-n) 解得n=3 故KNO3的还原产物为NO。

答案为B

二、方程或方程组法

根据质量守恒和比例关系,依据题设条件设立未知数,列方程或方程组求解,是化学计算中最常用的方法,其解题技能也是最重要的计算技能。

例题3、有某碱金属M及其相应氧化物的混合物共10 g,跟足量水充分反应后,小心地将溶液蒸干,得到14 g无水晶体。该碱金属M可能是()

A.锂B.钠C.钾D.铷

(锂、钠、钾、铷的原子量分别为:6.94、23、39、85.47)

【解析】设M的原子量为x

解得42.5>x>14.5

分析所给锂、钠、钾、铷的原子量,推断符合题意的正确答案是B、C。

三、守恒法

化学方程式既然能够表示出反应物与生成物之间物质的量、质量、气体体积之间的数量关系,那么就必然能反映出化学反应前后原子个数、电荷数、得失电子数、总质量等都是守恒的。巧用守恒规律,常能简化解题步骤、准确快速将题解出,收到事半功倍的效果。

例题4、将5.21 g纯铁粉溶于适量稀H2SO4中,加热条件下,用2.53 g KNO3氧化Fe2+,充分反应后还需0.009 mol Cl2才能完全氧化Fe2+,则KNO3的还原产物氮元素的化合价为___。

解析:0.093=0.025x+0.018,x=3,5-3=2。应填:+2。(得失电子守恒)

四、差量法

找出化学反应前后某种差量和造成这种差量的实质及其关系,列出比例式求解的方法,即为差量法。其差量可以是质量差、气体体积差、压强差等。

差量法的实质是根据化学方程式计算的巧用。它最大的优点是:只要找出差量,就可求出各

反应物消耗的量或各生成物生成的量。

例5、将质量为m1的NaHCO3固体加热分解一段时间后,测得剩余固体的质量为m2.

(1)未分解的NaHCO3的质量为___________。

(2)生成的Na2CO3的质量为__________。

(3)当剩余的固体的质量为___________,可以断定NaHCO3已完全分解。

五、平均值法

平均值法是巧解混合问题的一种常见的有效方法。

平均值法规律:混合物的平均相对分子质量、元素的质量分数、平均相对原子质量、生成的某指定物质的量总是介于组份的相应量的最大值和最小值之间。

解题方法:解题时首先计算平均分子式或平均相对原子质量,再用十字交叉法计算出各成分的物质的量之比。

例题7、由锌、铁、铝、镁四种金属中的两种组成的混合物10 g与足量的盐酸反应产生的氢气在标准状况下为11.2 L,则混合物中一定含有的金属是()

A.锌B.铁C.铝D.镁

【解析】

各金属跟盐酸反应的关系式分别为:

Zn—H2↑Fe—H2↑

2Al—3H2↑Mg—H2↑

若单独跟足量盐酸反应,生成11.2LH2(标准状况)需各金属质量分别为:Zn∶32.5g;Fe∶28 g;Al∶9g;Mg∶12g。其中只有铝的质量小于10g,其余均大于10g,说明必含有的金属是铝。应选C。

六、极值法

巧用数学极限知识进行化学计算的方法,即为极值法。

例题8、4个同学同时分析一个由KCl和KBr组成的混合物,他们各取2.00克样品配成水溶液,加入足够HNO3后再加入适量AgNO3溶液,待沉淀完全后过滤得到干燥的卤化银沉淀的质量如下列四个选项所示,其中数据合理的是()

A.3.06g B.3.36g

C.3.66g D.3.96

【解析】

本题如按通常解法,混合物中含KCl和KBr,可以有无限多种组成方式,则求出的数据也有多种可能性,要验证数据是否合理,必须将四个选项代入,看是否有解,也就相当于要做四题的计算题,所花时间非常多.使用极限法,设2.00克全部为KCl,根据KCl-AgCl,每74.5克KCl可生成143.5克AgCl,则可得沉淀为(2.00/74.5)*143.5=3.852克,为最大值,同样可求得当混合物全部为KBr时,每119克的KBr可得沉淀188克,所以应得沉淀为(2.00/119)*188=3.160克,为最小值,则介于两者之间的数值就符合要求,故只能选B和C.

七、十字交叉法

若用A、B分别表示二元混合物两种组分的量,混合物总量为A+B(例如mol)。若用xa、xb分别表示两组分的特性数量(例如分子量),x表示混合物的特性数量(例如平均分子量)则有:

十字交叉法是二元混合物(或组成)计算中的一种特殊方法,它由二元一次方程计算演变而成。若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用十字交叉法计算。

使用十字交叉法的关键是必须符合二元一次方程关系。它多用于哪些计算?明确运用十字交叉法计算的条件是能列出二元一次方程的,特别要注意避免不明化学涵义而滥用。

十字交叉法多用于:①有关两种同位素原子个数比的计算。②有关混合物组成及平均式量的计算。③有关混合烃组成的求算。(高二内容) ④有关某组分质量分数或溶液稀释的计算等。

例题9、已知自然界中铱有两种质量数分别为191和193的同位素,而铱的平均原子量为192.22,这两种同位素的原子个数比应为()

A.39∶61 B.61∶39

C.1∶1 D.39∶11

此题可列二元一次方程求解,但运用十字交叉法最快捷:

八、讨论法

讨论法是一种发现思维的方法。解计算题时,若题设条件充分,则可直接计算求解;若题设条件不充分,则需采用讨论的方法,计算加推理,将题解出。

例题10、在30mL量筒中充满NO2和O2的混合气体,倒立于水中使气体充分反应,最后剩余5mL气体,求原混合气中氧气的体积是多少毫升?

【解析】

最后5mL气体可能是O2,也可能是NO,此题需用讨论法解析。

解法(一)最后剩余5mL气体可能是O2;也可能是NO,若是NO,则说明NO2过量15mL。

设30mL原混合气中含NO2、O2的体积分别为x、y

4NO2+O2+2H2O=4HNO3

原混合气体中氧气的体积可能是10mL或3mL。

解法(二):

设原混合气中氧气的体积为y(mL)

(1)设O2过量:根据4NO2+O2+2H2O=4HNO3,则O2得电子数等于NO2失电子数。(y-5)4=(30-y)1 解得y=10(mL)

(2)若NO2过量:4NO2+O2+2H2O=4HNO3 4y y

3NO2+H2O=2HNO3+NO

因为在全部(30-y)mLNO2中,有5mLNO2得电子转变为NO,其余(30-y-5)mLNO2都失电子转变为HNO3。

O2得电子数+(NO2→NO)时得电子数等于(NO2→HNO3)时失电子数。

【评价】解法(二)根据得失电子守恒,利用阿伏加德罗定律转化信息,将体积数转化为物质的量简化计算。凡氧化还原反应,一般均可利用电子得失守恒法进行计算。无论解法(一)还是解法(二),由于题给条件不充分,均需结合讨论法进行求算。

4y+52=(30-y-5)1

解得y=3(mL)

原氧气体积可能为10mL或3mL

【小结】以上逐一介绍了一些主要的化学计算的技能技巧。解题没有一成不变的方法模式。但从解决化学问题的基本步骤看,考生应建立一定的基本思维模式。“题示信息十基础知识十逻辑思维”就是这样一种思维模式,它还反映了解题的基本能力要求,所以有人称之为解题的“能力公式”。希望同学们建立解题的基本思维模式,深化基础,活化思维,优化素质,跳起来摘取智慧的果实。

聆听并总结以下进行化学计算的基本步骤:

(1)认真审题,挖掘题示信息。

(2)灵活组合,运用基础知识。

(3)充分思维,形成解题思路。

(4)选择方法,正确将题解出。

(来源:网络,编辑整理by高中化学园)

联系我们  |  关于我们  |