数形结合思想的4种出题类型,附例题详解!
来源:汉寿教育信息网 时间:2016-05-29 08:47:42

小数老师说

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

1.高考试题对数形结合的考查主要涉及的几个方面:

(1)集合问题中Venn图(韦恩图)的运用;

(2)数轴及直角坐标系的广泛应用;

(3)函数图象的应用;

(4)数学概念及数学表达式几何意义的应用;

(5)解析几何、立体几何中的数形结合。

2. 数形结合思想解决的问题常有以下几种:

(1)构建函数模型并结合其图象求参数的取值范围;

(2)构建函数模型并结合其图象研究方程根的范围;

(3)构建函数模型并结合其图象研究量与量之间的大小关系;

(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;

(5)构建立体几何模型研究代数问题;

(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;

(7)构建方程模型,求根的个数;

(8)研究图形的形状、位置关系、性质等.

3.运用数形结合思想分析解决问题时,要遵循三个原则:

(1)等价性原则。要注意由于图象不能精确刻画数量关系所带来的负面效应;

(2)双方性原则。既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错;

(3)简单性原则。不要为了“数形结合”而数形结合,具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系,做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线为佳。

4.进行数形结合的信息转换,主要有三个途径:

(1)建立坐标系,引入参变数,化静为动,以动求解,如解析几何;

(2)构造成转化为熟悉的函数模型,利用函数图象求解;

(3)构造成转化为熟悉的几何模型,利用图形特征求解。

5.常见的“以形助数”的方法有:

(1)借助于数轴、文氏图,树状图,单位圆;

(2)借助于函数图象、区域(如线性规划)、向量本身的几何背景;

(3)借助于方程的曲线,由方程代数式,联想其几何背景,并用几何知识解决问题,如点,直线,斜率,距离,圆及其他曲线,直线和曲线的位置关系等,对解决代数问题都有重要作用,应充分予以重视.。

【典型例题】

类型一、数轴、韦恩图在集合中的应用

类型二、利用数形结合思想解决函数问题

【总结升华】

数学中考查创新思维,要求必须要有良好的数学素养,考查新定义函数的理解、解绝对值不等式,中档题,借形言数。

类型三:利用数形结合思想解决方程中的参数问题

【总结升华】

1.解决这类问题时要准确画出函数图象,注意函数的定义域。

2.用图象法讨论方程(特别是含参数的方程)解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解。

3.在运用数形结合思想分析问题和解决问题时,需做到以下四点:

①要准确理解一些概念和运算的几何意义以及曲线的代数特征;

②要恰当设参,合理用参,建立关系,做好转化;

③要正确确定参数的取值范围,以防重复和遗漏;

④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,便于问题求解。

类型四:依据式子的结构,赋予式子恰当的几何意义,数形结合解答

更多内容关注高中数学微信公众号!

汉寿复习备考
联系我们  |  关于我们  |