复数
常用解法:分式上下(等式左右)同乘共轭复数【注意事项:复平面中的象限问题】
程序框图
关键:根据流程一步步列表格写
立体几何正误选择题
从D开始看,答案往往是D
解析几何
勿忘△;斜率是否存在;有没有什么遗漏的条件未用;
实在不会,先写上韦达定理(一定有分),然后凑答案,看看是不是
、
、
、
这样的答案。若能凑出答案,过程写的越多越乱越好,一定不让老师看清,最后一个大大的答案等出来。
分类讨论
明确变量(几个变量,是存在还是任意)
当有任意某段变量都满足时,可以用某些值缩小讨论范围
当有极值点出现时,可用
求出某个超越形式的一般形式(如
① 由
有
② 反带回①中,可简化诸多运算)
要运用导数时,最好讲导数形式化成能看出极值点的形式
当自变量的范围中套有一个参数,应先考虑函数在比该范围更大的区域中的性质,再将参数运转回来观察
出现存在XX成立时,必然为最小值对应最小值,最大值对应最大值
出现任意XX成立时,必然为最大值对应最小值,最小值对应最大值
应该先使用完所有条件限制完成定义域之后,再进行分类讨论——分类必定是最后一步
立体几何大题
线线平行
线面平行
面面平行
线面垂直
面面垂直
方便建系的可以优先选择建系(确定基底两两垂直)
不方便建系时用几何法
体积法
线、面平移
空间余弦定理
若时间不够,把二面角或者异面直线所成角或者线面角找出来,必然有分
数列
证明等比数列时,
必须要另外写明
求
的时候,
的情况要考虑清楚
用
求
的时候,一定要注意
这个条件,然后再观察
是否满足
式子
通过数列来证明不等式的,一般能求和的都先求和,不能求和的再考虑放缩
文 | 凡心
微信搜索:shitijun009【长按可复制】
等你笑着走出考场的时候,就知道没白关注这号了